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11. Chi-squared test for goodness of fit

At various times we have made statements such as “heights follow normal distribu-
tion”, “lifetimes of bulbs follow exponential distribution” etc. Where do such claims come
from? Over years of analysing data, of course. This leads to an interesting question. Can
we test whether lifetimes of bulbs do follow exponential distribution?

We start with a simple example of testing whether a die is fair. The hypotheses are
H0 : the die is fair, versus H1 : the die is unfair2.

We throw the die n times and record the observations X1, . . . ,Xn. For j ≤ 6, let O j be
the number of times we observe the face j turn up. In symbols O j = ∑n

i=1 1Xi= j. Let E j =
E[O j] = n

6 be the expected number of times we see the face j (under the null hypothesis).
Common sense says that if H0 is true then O j and E j must be rather close for each j. How
to measure the closeness? Karl Pearson introduced the test statistic

T :=
6

∑
j=1

(O j−E j)2

E j
.

If the desired level of significance is α, then the Pearson χ2-test says “Reject H0 if T ≥
χ2

5(α)”. The number of degrees of freedom is 5 here. In general, it is one less than the
number of bins (i.e., how many terms you are summing to get T ).

Some practical points: The χ2 test is really an asymptotic statement. For large n, the
level of significance is approximately 1−α. There is no assurance for small n. Further,
in performing the test, it is recommended that each bin must have at least 5 observations
(i.e., O j ≥ 5). Otherwise we club together bins with fewer entries. The number 5 is a rule
of thumb, the more the better.

Fitting the Poisson distribution: We consider the famous data collected by Rutherford,
Chadwick and Ellis on the number of radioactive disintegrations. For details see the book
of Feller’s book (section VI.7) or http://galton.uchicago.edu/˜lalley/Courses/
312/PoissonProcesses.pdf.

The data consists of X1, . . . ,X2608 (where Xk is the number of particles detected by the
counter in the kth time interval. The hypotheses are

H0 : F is a Poisson distribution. H1 : F is not Poisson.

The physical theories predict that the distribution ought to be Poisson and hence we have
taken it as the null hypothesis3

We define O j as the number of time intervals in which we see exactly j particles. Thus
O j = ∑2608

i=1 1Xi= j. How do we find the expected numbers? If the null hypothesis had said
that F has Poisson(1) distribution, we could use that to find the expected numbers. But H0
only says Poisson(λ) for an unspecified λ? This brings in a new feature.

First estimate λ, for example λ̂ = Xn is an MLE as well as method of moments esti-
mate. Then we use this to calculate Poisson probabilities and the expected numbers. In
other words, E j = e−λ̂ λ̂ j

j! . For the given data we find that λ̂ = 3.87. The table is as follows.

2You may feel that the null and alternative hypotheses are reversed. Is not independence a special property
that should prove itself. Yes and no. Here we are imagining a situation where we have some reason to think that
the die is fair. For example perhaps the die looks symmetric.

3When a new theory is proposed, it should prove itself and is put in the alterntive hypotheis, but here we
take it as null.

http://galton.uchicago.edu/~lalley/Courses/312/PoissonProcesses.pdf
http://galton.uchicago.edu/~lalley/Courses/312/PoissonProcesses.pdf
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j 0 1 2 3 4 5 6 7 8 9 ≥ 10
O j 57 203 383 525 532 408 273 139 45 27 16
E j 54.4 210.5 407.4 525.4 508.4 393.5 253.8 140.3 67.9 29.2 17.1

Two remarks: The original data would have consisted of several more bins for j = 11,12 . . ..
These have been clubbed together to perform the χ2 test (instead of a minimum of 5 per
bin, they may have ensured that there are at least 10 per bin). Also, the estimate λ̂ = 3.87
was obtained before clubbing these bins. Indeed, if the data is merely presented as the
above table, there will be some ambiguity in how to find λ̂ as one of the bins says “≥ 10”.

Then we compute

T =
10

∑
j=0

(O j−E j)2

E j
= 14.7.

Where should we look up in the χ2 table? Earlier we said that the degrees of freedom is
one less than the number of bins. Here we give the more general rule.

Degrees of freedom of the χ2 = No. of bins −1−No. of parameters estimated from data.

In our case we estimated one parameter, λ hence the d.f. of the χ2 is 11− 1− 1 = 9.
Looking at χ2

9 table one can see that the p-value is 0.10. This is the probability that a χ2
9

random variable is greater than 14.7. (Caution: Elsewhere I see that the p-value for this
experiment is reported as 0.17, please check my calculations!). This means that at 5%
level, we would not reject the null hypothesis. If the p-value was 0.17, we would not reject
the null hypothesis even at 10% level.

Fitting a continuous distribution: Chi-squared test can be used to test goodness of fit
for continuous distributions too. We need some modifications. We must make bins of
appropriate size, like [a,a+h], [a+h,a+2h], . . . , [a+h(k−1),a+hk] for a suitable h and
k. Then we find the expected numbers in each bin using the null hypothesis (first estimating
some parameters if necessary) and then proceed to compute T in the same way as before.
Then check against the χ2 table with the appropriate degrees of freedom. We omit details.

The probability theorem behind the χ2-test for goodness of fit: Let (W1, . . . ,Wk) have
multinomial distribution with parameters n,m,(p1, . . . , pk). (In other words, place n balls at
random into m bins, but each ball goes into the ith bin with probability pi and distinct balls
are assigned independently of each other). The following proposition is the mathematics
behind Pearson’s test.

Proposition [Pearson]: Fix k, p1, . . . , pk. Let Tn = ∑k
i=1

(Wi−npi)2

npi
. Then Tn converges to a

χ2
k−1 distribution in the sense that P{Tn ≤ x} →

xR

0
fk−1(u)du where fk−1 is the density of

χ2
k−1 distribution.

How does this help? Suppose X1, . . . ,Xn are i.i.d. random variables taking k values
(does not matter what the values are, say t1, t2, . . . , tk) with probabilities p1, . . . , pk. Then,
let Wi be the number of Xis whose value is ti. Clearly, (W1, . . . ,Wk) has a multinomial
distribution. Therefore, for large n, the random variable Tn defined above (which is in fact
the χ2-statistic of Pearson) has approximately χ2

k−1 distribution. This explains the test.
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Sketch of proof of the proposition: Start with the case k = 2. Then, W1 ∼ Bin(n, p1) and
W2 = r−W1. Thus, Tn = (W1−np1)2

np1 p2
(recall that p1 + p2 = 1 and check this!). We know that

(W1− np1)/
√np1q1 is approximately a N(0,1) random variable, where qi = 1− pi). Its

square has (approximatelyχ2
1 distribution. Thus the proposition is proved for k = 2.

When k > 2, what happens is that the random variables ξi := (Wi− npi)/
√npiqi are

approximately N(0,1), but not independent. In fact the correlation between ξi and ξ j is
close to −

√
pi p j/qiq j. The sum of squares of ξis gives the χ2 statistic. On the other hand,

one can (with some clever linear algebra/matrix manipulation) write ∑k
i=1 ξ2

i as ∑k−1
i=1 η2

i
where ηi are independent N(0,1) random variables. Thus we get χ2

k−1 distribution.

12. Tests for independence

Suppose we have a bivariate sample (X1,Y1),(X2,Y2), . . . ,(Xn,Yn) i.i.d. from a joint
density (or joint pmf) f (x,y). The question is to decide whether Xi is independent of Yi.

Example 179. There are many situations in which such a problem arises. For example,
suppose a bunch of students are given two exams, one testing mathematical skills and
another testing verbal skills. The underlying goal may be to investigate whether the human
brain has distinct centers for verbal and quantitative thinking.

Example 180. As another example, say we want to investigate whether smoking causes
lung cancer. In this case, for each person in the sample, we take two measurements - X
(equals 1 if smoker and 0 if not) and Y (equal 1 if the person has lung cancer, 0 if not). The
resulting data may be summarized in a two-way table as follows.

X = 0 X = 1
Y = 0 n0,0 n0,1 n0·
Y = 1 n1,0 n1,1 n1·

n·0 n·1 n

Here the total sample is of n persons and ni, j denote the numbers in each of the four boxes.
The numbers n0· etc denote row or column sums. The statistical problem is to check if
smoking (X) and incidence of lung cancer (Y ) are positively correlated.

Testing independence in bivariate normal: We shall not discuss this problem in detail
but instead quickly give some indicators and move on. Here we have (Xi,Yi) i.i.d bivari-
ate normal random variables with E[X ] = µ1, E[Y ] = µ2, Var(X) = σ2

1, Var(Y ) = σ2
2 and

Corr(X ,Y ) = ρ. The testing problem is H0 : ρ = 0 versus H1 : ρ $= 0. (Remember that
if (X ,Y ) is bivariate normal, then X and Y are independent if and only if X and Y are
uncorrelated.

The natural statistic to consider is the sample correlation coefficient (Pearson’s r statis-
tic)

rn :=
sX ,Y

sX sY

where s2
X ,s2

Y are the sample variances of X and Y and sX ,Y = 1
n−1 ∑n

i=1(Xi−X)(Yi−Y ) is
the sample covariance. It is clear that the test should reject null hypothesis if rn is away
from 0. To decide the threshold we need the distribution of rn under the null hypothesis.

Fisher: Under the null hypothesis, r2
n has Beta( 1

2 , n−2
2 ) distribution.
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Using this result, we can draw the threshold for rejection using the Beta distribution
(of course the explicit threshold can only be computed numerically). If the assumption of
normality of the data is not satisfied, then this test is invalid. However, for large n as usual
we can obtain an asymptotically level-α test.

Testing for independence in contingency tables: Here the measurements X and Y take
values in {x1, . . . ,xk} and {y1, . . . ,y!}, respectively. These xi,y j are categories, not nu-
merical values (such as “smoking” and “non-smoking”). Let the total number of samples
be n and let Ni, j be the number of samples with values (xi,y j). Let Ni· = ∑ j Ni, j and let
N· j = ∑i Ni, j.

We want to test

H0 : X and Y are independent
H1 : X and Y are not independent.

Let µ(i, j) = P{X = xi,Y = y j} be the joint pmf of (X ,Y ) and let p(i), q( j) be the mar-
ginal pmfs of X and Y respectively. From the sample, our estimates for these probabilities
would be µ̂(i, j) = Ni, j/n and p̂(i) = Ni·/n and q̂( j) = N· j/n (which are consistent in the
sense that ∑ j µ̂(i, j) = p̂(i) etc).

Under the null hypothesis we must have µ(i, j) = p(i)q( j). We test if these equalities
hold (approximately) for the estimates. That is, define

T =
k

∑
i=1

!

∑
j=1

(Ni, j−np̂(i)q̂( j))2

np̂(i)q̂( j)
.

Note that this is in the usual form of a χ2 statistic (sum of (observed−expected)2/expected).
The number of terms is k!. We lose one d.f. as usual but in addition we estimate (k−1)

parameters p(i) (the last one p(k) can be got from the others) and (!−1) parameters q( j).
Consequently, the total degress of freedom is k!−1− (k−1)− (!−1) = (k−1)(!−1).

Hence, we reject the null hypothesis if T > χ2
(k−1)(!−1)(α) to get (an approximately)

level α test.

13. Regression and Linear regression

Let (Xi,Yi) be i.i.d random variables. For example, we could pick people at random
from a population and measure their height (X) and weight (Y ). One question of interest is
to predict the value of Y from the value of X . This may be useful if Y is difficult to measure
directly. For instance, X could be the height of a person and Y could be the xxx

In other words, we assume that there is an underlying relationship Y = f (X) for an
unknown function f which we want to find. From a random sample (X1,Y1), . . . ,(Xn,Yn)
we try to guess the function f .

If we allow all possible functions, it is easy to find one that fits all the data points, i.e.,
there exists a function f : R→ R (in fact we may take f to be a polynomials of degree n)
such that f (Xi) = Yi for each i ≤ n (this is true only if we assume that all Xi are distinct
which happens if X has a continuous distribution). This is not a good predictor, because the
next data point (U,V ) will fall way off the curve. We have found a function that “predicts”
well all the data we have, but not for a future observation!

Instead, we fix a class of functions, for example the collection of all linear functions
y = mx+ c where m,c ∈ R and within this class, find the best fitting function.
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Remark 181. One may wonder if linearity is too restrictive. To some extent, but perhaps
not as much as it sounds at first.

(1) Firstly, many relationships are linear in a reasonable range of the X variable (for
example, resistance of a materiaal versus temperature).

(2) Secondly, we may sometimes transform the variables so that the relationship
becomes linear. For example, if Y = aebX , then log(Y ) = a′ + b′X where a′ =
log(a) and b′ = log(b) and hence in terms of the new variables X and log(Y ), we
have a linear relationship.

(3) Lastly, as a slight extension of linear regression, one can study multiple linear
regression, where one has several independent variables X (1), . . . ,X (p) and try to
fit a linear function Y = β1X (1) + . . .+βpX (p). Once that is done, it increases the
scope of curve fitting even more. For example, if we have two variable X ,Y , then
we can take X (1) = 1, X (2) = X , X (3) = X2. Then, linear regression of Y against
X (1),X (2),X (3) is tantamount to fitting a quadratic polynomial curve for X ,Y .

In short, multiple linear regression along with non-linear transformations of the individual
variables, the class of functions f is greatly extended.

Finding the best linear fit: We need a criterion for deciding the “best”. A basic one is the
method of least squares which recommends finding α,β such that the error sum of squares
R2 := ∑n

k=1(Yk −α−βXk)2 is minimized.
For fixed Xi,Yi this is a simple problem in calculus. We get

β̂ = ∑n
k=1(Xk −Xn)(Yk −Y n)

∑n
k=1(Xk −Xn)2 =

sX ,Y

s2
X

, α̂ = Y n − β̂Xn

where sX ,Y is the sample covariance of X ,Y and sX is the sample variance of X .
We leave the derivation of the least squares estimators by calculus to you. Instead we

present another approach.
For a given choice of β, we know that the choice of α which minimizes R2 is the

sample mean of Yi −βXi which is Y −βX . Thus, we only need to find β̂ that minimizes
n

∑
k=1

(
(Yk −Y )−β(Xk −X)

)2

and then we simply set α̂ = Y −βX . Let4 Zk = Yk−Y
Xk−X and wk = (Xk −X)2/s2

X . Then,

n

∑
k=1

(
(Yk −Y )−β(Xk −X)

)2 = s2
X

n

∑
k=1

wk (Zk −β)2 .

Since wk are non-negative numbers that add to 1, we can intepret it as a probability mass
function and hence we see that the minimizing β is given by the expectation with respect
to this mass function. In other words,

β̂ =
n

∑
k=1

wkZk =
sX ,Y

s2
X

.

Another way to write it is β̂ = sY
sX

rX ,Y where rX ,Y is the sample correlation coefficient.

4We are dividing by Xk − X . What if it is zero for some k? But note that in the expression
∑

(
(Yk −Y )−β(Xk −X)

)2, all such terms do not involve β and hence can be safely left out of the summation. We
leave the details for you to work out (the expressions at the end should involve all Xk,Yk).
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A motivation for the least squares criterion: Suppose we make more detailed model
assumptions as follows. Let X be a control variable (i.e., not random but we can tune
it to any value, like temperature) and assume that Yi = α + βXi + εi where εi are i.i.d.
N(0,σ2) “errors”. Then, the data is essential Yi that are independent N(α+βXi,σ2) random
variables. Now we can extimate α,β by the maximum likelihood method.

Example 182 (Hubble’s 1929 experiment on the recession velocity of nebulae and their
distance to earth). Hubble collected the following data that I took from http://lib.
stat.cmu.edu/DASL/Datafiles/Hubble.html. Here X is the number of megaparsecs
from the nebula to earth and Y is the observed recession velocity in 103km/s.

X 0.032 0.034 0.214 0.263 0.275 0.275 0.45 0.5 0.5 0.63 0.8 2
Y 0.17 0.29 -0.13 -0.07 -0.185 -0.22 0.2 0.29 0.27 0.2 0.3 1.09
X 0.9 0.9 0.9 0.9 1 1.1 1.1 1.4 1.7 2 2 2
Y -0.03 0.65 0.15 0.5 0.92 0.45 0.5 0.5 0.96 0.5 0.85 0.8

We fit two straight lines to this data.
(1) Fit the line Y = α+βX . The least squares estimators (as derived earlier) turn out

to be α̂ = −0.04078 and β̂ = 0.45416. If Zi = α + βXi are the predicted values
of Yis, then one can see that the residual sum of squares is ∑i(Yi−Zi)2 = 1.1934.

(2) Fit the line Y = bX . In this case we get b̂ by minimizing ∑i(Yi− bXi)2. This
is slightly different from before, but the same methods (calculus or the alternate
argument we gave) work to give

b̂ = ∑n
i=1 YiXi

∑n
i=1 X2

i
= 0.42394.

The residual sum of squares ∑n
i=1(Yi−bXi)2 turns out to be 1.2064.

The residual sum of squares is smaller in the first, thus one may naively think that it is a
better fit. However, note that the reduction is due to an extra parameter. Purely statistically,
introducing extra parametrs will always reduce the residual sum of squares for obvious
reasons. But the question is whether the extra parameter is worth the reduction. More
precisely, if we fit the data too closely, then the next data point to be discovered (which
may be nebula that is 10 megaparsecs away) may fall way off the curve.

More importantly, in this example, physics tells us that the line must pass through
zero (that is, there is no recession velocity when two objects are very close). Therefore
it is the second line that we consider, not the first. This gives the Hubble constant to
be 423 km./s./megaparsec (the currently accepted values appear to be about 70, with data
going up to distances of hundreds of megaparsecs...see https://www.cfa.harvard.edu/
˜dfabricant/huchra/hubble.plot.dat!).

Example 183. I have taken this example from the wonderful compilation of data sets by
A.P.Gore, S.A.Paranjpe, M.B.Kulkarni, available at http://ces.iisc.ernet.in/hpg/
nvjoshi/statspunedatabook/databook.html. In this example, Y denotes the number
of frogs of age X (in some delimited population).

X 1 2 3 4 5 6 7 8
Y 9093 35 30 28 12 8 5 2

A prediction about life-times says that the survival probability P(t) (which is the chance
that an individual survives up to age t or more) decays as P(t) = Ae−bt for some constants
A and b. We would like to check this agains the given data.

http://ces.iisc.ernet.in/hpg/nvjoshi/statspunedatabook/databook.html
http://lib.stat.cmu.edu/DASL/Datafiles/Hubble.html
http://lib.stat.cmu.edu/DASL/Datafiles/Hubble.html
https://www.cfa.harvard.edu/~dfabricant/huchra/hubble.plot.dat
https://www.cfa.harvard.edu/~dfabricant/huchra/hubble.plot.dat
http://ces.iisc.ernet.in/hpg/nvjoshi/statspunedatabook/databook.html
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What we need are individuals that survive beyond age t. Taking Z to be the cumulative
sums of Y , this gives us

X 1 2 3 4 5 6 7 8
Z 9213 120 85 55 27 15 7 2

P = Z/n 1.0000 0.0130 0.0092 0.0060 0.0029 0.0016 0.0008 0.0002
W = logP 0 -4.3409 -4.6857 -5.1210 -5.8325 -6.4203 -7.1825 -8.4352

We compute that X = 4.5, W = −5.25, std(X) = 2.45, std(W ) = 2.52 and corr(X ,W ) =
0.92. Hence, in the linear regression W = a + bX , we see that b̂ = 0.94 and â = −9.49.
The residual sum of squares is 7.0.

How good is the fit? For the same data (X1,Y1), . . . ,(Xn,Yn), suppose we have two candi-
dates (a) Y = f (X) and (b) Y = g(X). How to decide which is better? Or how to say
if a fit is good at all?

By the least-squares criterion, the answer is the one with smaller residual sum of
squares SS := ∑n

k=1(Yk − f (Xk))2. Usually one presents a closely related quantity R2 =
1− SS

SS0
(where SS0 = ∑n

k=1(Yk−Y )2 = (n− 1)s2
Y ). Since SS0 is (a multiple of) the total

variance in Y , R2 measures how much of it is “explained” by a particular fit. Note that
0≤ R2 ≤ 1. And higher (i.e., closer to 1) the R2 is, the better the fit.

Thus, the first naive answer to the above question is to compute R2 in the two situations
(fitting by f and fitting by g) and see which is higher. But a more nuanced approach is
preferable. Consider the same data and three situations.

(1) Fit a constant function. This means, choose α to minimize ∑n
k=1(Yk−α)2. The

solution is α̂ = Y and the residual sum of squares is SS0 itself. Then, R2
0 = 0.

(2) Fit a linear function. Then α,β are chosen as discussed earlier and the residual
sum of squares is SS1 = ∑n

k=1(Yk− α̂− β̂Xk)2. Then, R2
1 = 1− SS1

SS0
.

(3) Fit a quadratic function. The the residual sum of squares is SS2 = ∑n
k=1(Yk −

α̂− β̂Xk− γ̂X2
k )2 where α̂, β̂, γ̂ are chosen so as to minimize ∑n

k=1(Yk−α−βXk−
γX2

k )2. Then R2
2 = 1− SS2

SS0
.

Obviously we will have R2
2 ≥ R2

1 ≥ R2
0 (since linear functions include constants and qua-

dratic functions include linear ones). Does that mean that the third is better? If that were
the conclusion, then we can continue to introduce more parameters as that will always re-
duce the residual sum of squares! But that comes at the cost of making the model more
complicated (and having too many parameters means that it will fit the current data well,
but not future data!). When to stop adding more parameters?

Qualitatively, a new parameter is desirable if it leads to a significant increase of the
R2. The question is, how big an increase is significant. For this, one introduces the notion
of adjusted R2, which is defined as follows:

If the model has p parameters, then define SS = SS/(n−1− p). In particular, SS0 =
SS0
n−1 = s2

Y . Then define the adjusted R2 as R2 = 1− SS
SS0

.

In particular, R2
0 = R2

0 as before. But R2
1 = 1− SS1/(n−2)

SS0/(n−1) . Note that R2 does not nec-
essarily increase upon adding an extra parameter. If we want a polynomial fit, then a rule
of thumb is to keep adding more powers as long as R2 continues to increase and stop the
moment it decreases.
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Example 184. To illustrate the point let us look at a simulated data set. I generated 25
i.i.d N(0,1) variables Xi and then generated 25 i.i.d. N(0,1/4) variables εi. And set Yi =
2Xi + εi. The data set obtained was as follows.

X -0.87 0.07 -1.22 -1.12 -0.01 1.53 -0.77 0.37 -0.23 1.11 -1.09 0.03 0.55
Y -2.43 -0.56 -2.19 -2.32 -0.12 3.77 -1.4 0.84 0.34 1.83 -1.83 0.48 0.98
X 1.1 1.54 0.08 -1.5 -0.75 -1.07 2.35 -0.62 0.74 -0.2 0.88 -0.77
Y 2.3 2.5 -0.41 -2.94 -1.13 -0.84 4.36 -1.14 1.45 -1.36 1.55 -2.43

To this data set we fit two models (A) Y = βX and (B) Y = a + bX . The results are as
follows.

SS0 = 96.20, R2
0 = 0

SS1 = 6.8651, R2
1 = 0.9286, R2

1 = 0.9255

SS2 = 6.8212, R2
2 = 0.9291, R2

2 = 0.9227.

Note that the adjusted R2 decreases (slightly) for the the second model. Thus, if we go by
that, then the model with one parameter is chosen (correctly, as we generated from that
model!). You can try various simulations yourself. Also note the high value of R2

1 (and R2
2)

which indicates that it is not a bad fit at all.


